

GENEVOS SAS

MARINE CERTIFIED

PLUG & PLAY

HYDROGEN POWER MODULES

About Genevos

Marine hydrogen power solutions

MISSION

Pioneering plug & play marine hydrogen power solutions to enable clean and resilient mobility on our oceans.

HERITAGE

Genevos was founded in 2018 as a spin-off company from 'OceansLab – Cleantech Accelerator', a record-breaking zero-emission offshore sailing project that innovates and demonstrates low-carbon technologies in the maritime sector.

ACTIVITY

Genevos engineers, certifies and produces plug-and-play Hydrogen Power Modules (HPM) offering scalable power solutions up to multi-MW scale.

Genevos goes further to support the energy transition for clients through the provision of engineering services and energy optimisation through an advanced power management system.

Hydrogen Power Module 'HPM'

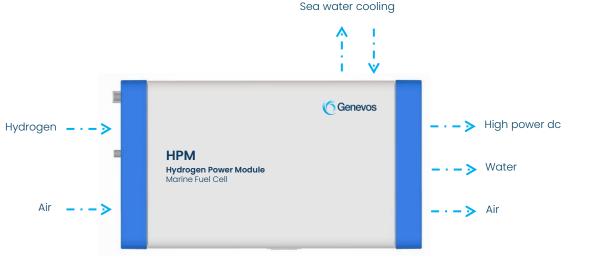
The plug & play power solution for marine

Decarbonising vessels through auxiliary, primary or hybrid integration

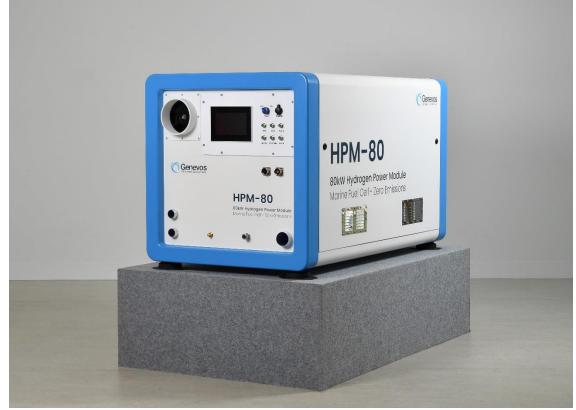
This scalable solution can be applied across the maritime sector from small to large vessels including yachts, ferries, service vessels, inland transport and shipping. In addition to offshore platforms for onboard power generation.

FEATURES

- Zero emissions no vibration and low noise
- Practical compact and low weight
- Stackable to high power
- Modular enabling high redundancy
- Marinised protection against humidity & salinity
- Durable resistant graphite plate technology
- Certified for use on commercial vessels
- Plug & play fully integrated balance of plant
- Efficiency through adaptive power management



Drop-in Fuel Cell Solution


Genevos' plug & play marine power solution

COMPONENTS/SYSTEMS INTEGRATED

- Durable graphite PEM fuel cell stack
- Air filtration and compression
- Cooling system with heat exchanger
- DC-DC converter
- Energy Management System
- Safety monitoring system
- User interface & data logger

HPM Benefits

Accelerating the clean power transition

ADVANCED

- Marine resistant and proven graphite stack technology
- Marinised resistant to saline environment

EFFICIENT

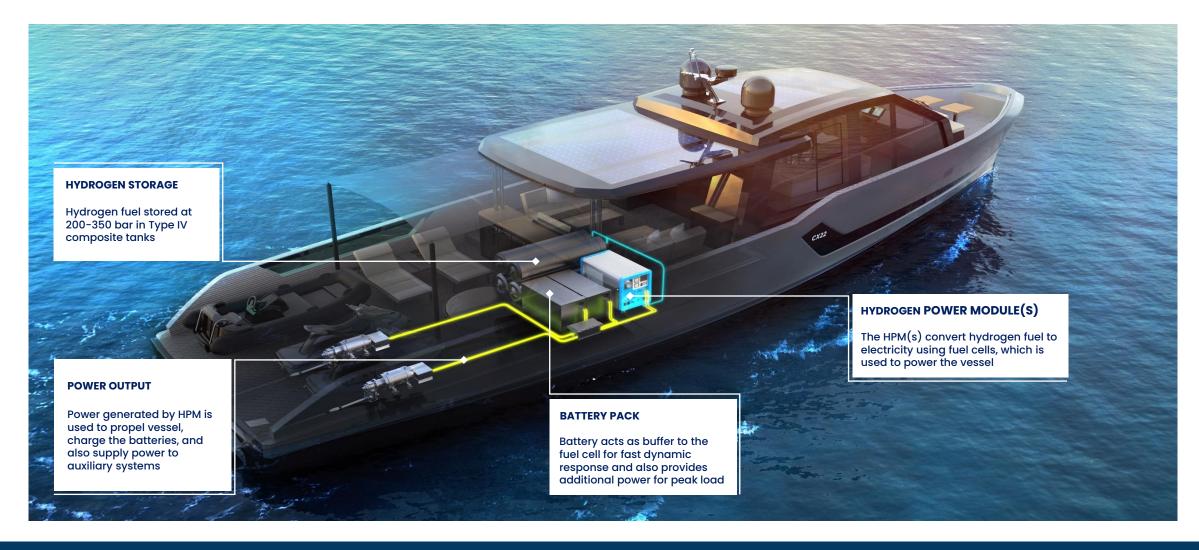
- Up to 55% net fuel efficiency twice that of a diesel genset
- Advanced energy management optimising fuel efficiency
- 4 6 times lighter than batteries

ENVIRONMENTAL

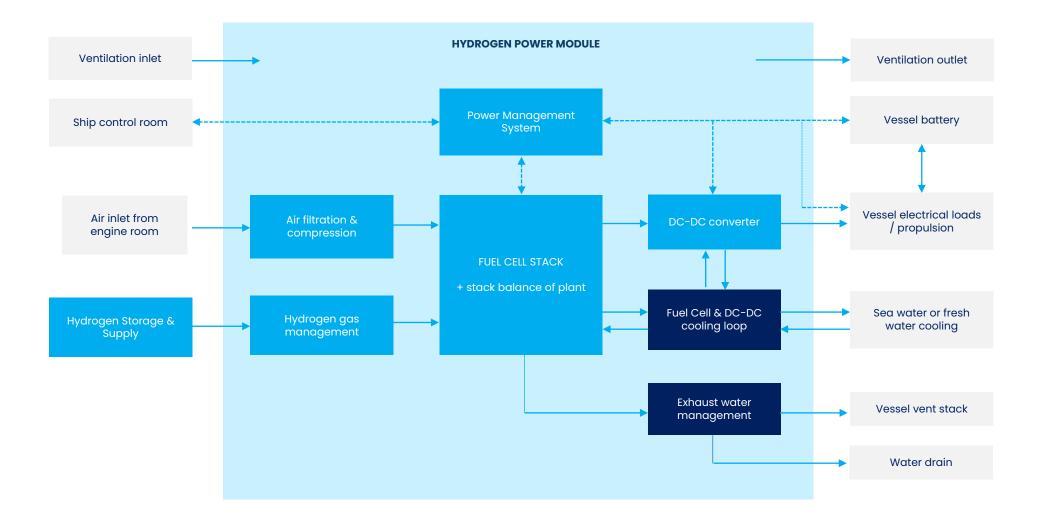
- Zero emissions: No CO₂, NO_x or SO_x
- No vibration, low noise
- High recyclability (>90%)

PRACTICAL 'PLUG-AND-PLAY'

- Rapid refuelling
- Low maintenance
- Modular multiple units to attain required power
- Fully integrated system for practical installation



Hydrogen-Electric System


Providing a low weight, zero emission propulsion solution for vessels

HPM - Scope of Supply

The drop-in solution

Scalable Power Solutions

Modularity to enable tailored power systems

HPM FAMILY

Genevos offer a broad solution that can be applied across the maritime sector based on three scalable modules with EOL rated powers of 40 kW, 80 kW and 250 kW.

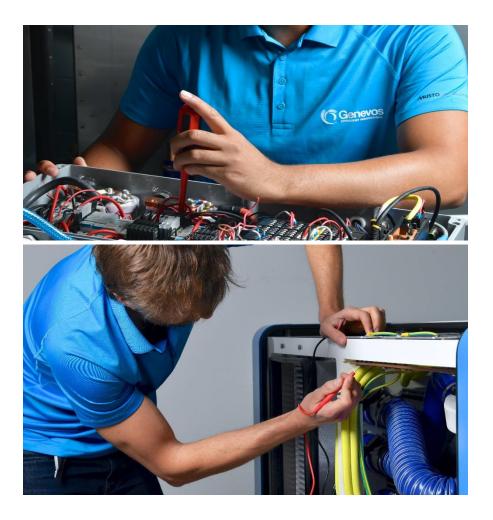
This modularity meets customised power requirements for a wide range of vessels and stationary applications, whilst benefiting from increased energy security.

The marinised modules can be installed in an engine room or containerized for deck installation.

HIGH POWER SYSTEMS

The 250 kW (launch date Q2 2024) provides a highly practical solution for achieving multi-MW power systems.

- Fully-integrated, independent modules for high redundancy
- Optimised durability, through advanced system control
- Optimised fuel cell efficiency, through advanced system control



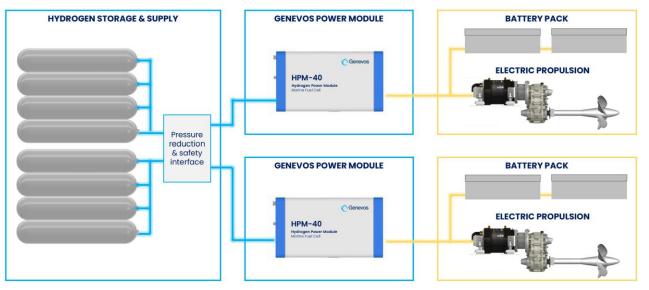
HPM Technical Specifications

A compact and low weight solution designed for vessels

TECHNICAL DATA	HPM-40 Gen II	HPM-80 Gen II	HPM-250 Gen II	
Continuous Peak Power (BOL)	50 kW	100 kW	280 kW	
Rated Power (EOL)	35 kW	80 kW	240 kW	
Output Voltage (Controllable)	300 - 950 V _{dc}	700 - 950 V _{dc}	700 - 950 V _{dc}	
Weight	250 kg	450 kg	930 kg	
Peak Efficiency	54 %	54 %	52 %	
Dimensions (L x W x H)	140 x 80 x 55 cm	140 x 80 x 85 cm	160 x 120 x 150 cm	
Communication		CAN bus		
FC Stack Estimated Lifetime		> 20,000 hrs		
Fuel	Gaseous Hydrogen ISO14687-2			
Ambient Air Temperature Operation	-25 to 45°C			
nvironmental Rating IP54 (56 option)				

Low – Medium Power Applications

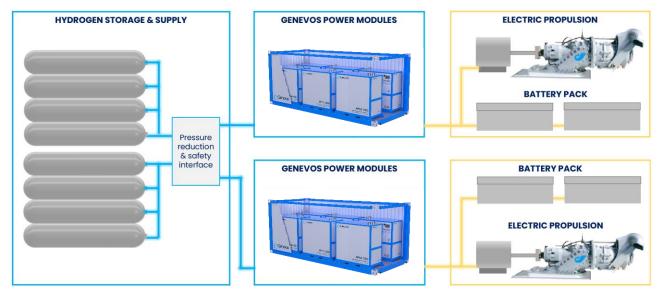
Small-medium power commercial and pleasure craft: 40 kW & 80 kW modules


HPM-40

HPM-80

LOW POWER SYSTEM

VESSEL EXAMPLES


High Power Applications

Large commercial marine applications: 250 kW – multi MW

HPM-250

HIGH POWER SYSTEM

Genevos Efficient innovations

VESSEL EXAMPLES

Compatibility with Future E-Fuels

Modularity enables compatibility with liquid e-fuels for future retrofits or new vessels

COMPRESSED HYDROGEN

HYDROGEN E-FUELS

Technology Comparison

A scalable cost-effective zero-emissions solution for marine

Comparison of different powertrain technologies, based on a 30 kW marine propulsion system with a 12 hour range.

Hydrogen - A Vital Future Fuel for Marine

Incentivising global H2 infrastructure to access clean hydrogen

Detailed forecasts indicate that hydrogen will play a crucial role in decarbonising ferries, service vessels and cruise ships.

Container		2.8		3.2	Substantial amount of	
Bulk carrier	2.2		2.0		large ocean-going cargo vessels will continue to	
Tanker	2.2		1.4		use fossil fuel until 2050	
Gas Carrier	0.9		0.8		Ammonia (or methanol)	
Ferry	0.6	0.	6		will be the other dominant fuel in the large ocean	
RoRo/PCC	0.5	0.4			going fleet	
Cruise	0.4	0.	6		Hydrogen will be used by	
Tug boats	0.3	0.3	0.3		smaller ships with short refueling cycles and scale	
Offshore	0.2	0.1			up between 2030-50. Mos	
Other cargo	0.9		0.9		likely fuel cells will be applied	
Other non cargo	0.7).7			

Source: McKinsey Energy Insights analysis powered by Maersk Mc-Kinney Moller Center for Zero Carbon Shipping NavigaTE model

McKinsey & Company	13
22 November 20	22

COMMERCIAL OPPORTUNITY

- Payback after 6 years with over 20% of savings after 10 years in operation relative to diesel system, based on TCO
- Cost of equipment is 50% less than all-lithium battery system for 24 hr system range
- Cost of green hydrogen forecast to halve before 2030 and will undercut all other forms of hydrogen and hydrogen e-fuels

Projected fuel costs - 2030 ^

RENEWABLE FUELS Battery Storage of renewables Ammonia from renewables Methanol from renewables Gas oil from Biomass Hydrogen from renewables **FOSSIL FUELS** Marine diesel oil (MDO) Low sulphur heavy fuel oil (LSHFO) Liquified natural gas (LNG) Hydrogen from natural gas 0 50 100 150 200 Cost (€/MWh)

^ Source: Zero-Emission Vessels - Transition Pathways 2019

Shipping

Engineering for Efficiency

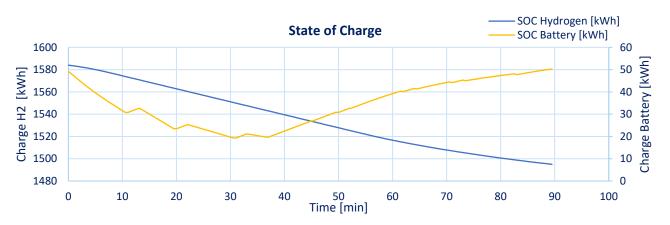
System sizing, installation design, power management

Genevos offers engineering services for clients exploring and applying HPM solutions through the provision of in-house simulation tools and expertise in management of power, control, and hydrogen gas.

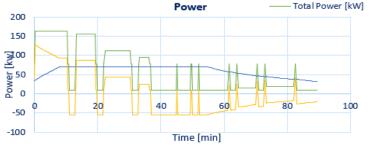
Further supporting on installation and commissioning, Genevos additionally provides support services for efficiency and performance optimisation, along with an annual service package.

SERVICES

<u>Offsite</u>


- Preliminary sizing studies based on vessel operational profile
- Hydrogen system integration design
- Safety & risk assessment

<u>Onsite</u>


- Commissioning support
- System installation

After-Sales

- Cloud connectivity & remote monitoring
- Power Management System (PMS) upgrades and performance optimisation
- Annual Service Package

Recent Awards

Accelerating the clean hydrogen transition

Genevos' award-winning and drop-in marine fuel cell revolutionises maritime power by offering an environmentally friendly solution with high scalability and redundancy.

Hydrogen Breakthrough of the Year Award

Monaco Price for Innovation in Hydrogen & Transportation

Partners & Associations

Collaborating for the clean transition

Contact Us

Find out more about how to decarbonise your vessel or fleet

Philippe DAVIGNON	F
Sales Director	C
philippe.davignon@genevos.com	1
+33 7 72 14 92 46	-

 Phil SHARP

 CTO
 Co-Founder

 phil@genevos.com

 +44 7973 378997

 +33 623 906 702

Innovating zero emission power solutions to enable clean and resilient mobility on our oceans

www.genevos.com

